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INTRODUCTION

The switched reluctance machine (SRM) is being incorporated into the

designs of new electric actuator motors and integral starter/generators due to
its inherent robustness and fault tolerant qualities. The SRM rotor is more

robust than conventional machines since it has no windings or magnets

which limit the integrity of the rotor structure. The stator windings are also

different from a conventional stator in that they are completely independent
from each other providing electrical isolation. If a phase winding is subjected

to a short circuit, the phase is simply de-excited allowing the machine to
continue operation on the remaining phases; thus, the short is not propagated

to other windings and power is not cut off as in conventional machines.
The SRM torque is developed due to the magnetic attraction between the

rotor and stator poles. The timing of the magnetic excitation with respect to

the relative position of the rotor poles to the stator poles controls the

amplitude and polarity of the torque pulses. A SRM can be operated as either a
motor or a generator depending on the the timing of the excitation. If the

machine is excited as a rotor pole is approaching a stator pole, the slope of the

torque is positive and the machine will behave as a motor. On the other hand,

if the machine is excited as a rotor pole is passing by a stator pole, the slope of

the torque is negative and the machine will behave as a generator. Given the

capability of a single machine being operated as both a motor and a generator,

the SRM lends itself as a strong candidate for a starter/generator.

In order to obtain the correct timing for the machine's excitation,

knowledge of the relative position between the rotor and the stator is required.

The present method of determining this relative angle utilizes a rotor-mounted

resolver or absolute encoder. This method can provide precise angles, but it

represents a single point of failure to the system. This technique also limits

the system's ability to operate in high temperature environments for which

the switched reluctance machine is otherwise well suited.

Due to the limiting factors of the encoder/resolver technique,

alternative methods of determining rotor position are being pursued. The

stator flux linkages can be estimated by integrating measured voltages and
currents. The excitation (the magnetomotive force) for each phase is

proportional to the measured current and the number of turns per pole on the

stator. These flux linkages and excitations can then be incorporated into a
magnetic circuit model from which the relative rotor angle can be determined

I
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through mathematical techniques involving finite element analysis and the

Newton Raphson method [1]. There are a number of disadvantages associated

with this method. The extensive computation to be performed for each

discrete input results in a costly delay. In other words, a real time angle is not

available, so the maximum speed of rotation and the number of phases of the

machine are limited. By limiting the speed, the machine's performance is

hindered, and by limiting the number of phases, the fault tolerance of the

machine is limited.

The objective of this research is to develop an artificial neural network

that will estimate the rotor position and eliminate the need for the shaft

position sensor. Existing sensors provide phase voltages and currents to the

SRM controller. The network will use these measured voltages and currents as

inputs, process them, and output the rotor/stator angle for controlling the

excitation. The network will be a heteroassociative nonlinear mapping

network providing the Icast computational, most responsive, and highest fault

tolerant solution.

There are a number of reasons that a neural network was chosen as an

approach to solving the stated problem. The main advantage of using a n

artificial neural network as opposed to another computational technique for

rotor location identification is that the network produces an immediate

response with minimal computation for a given input set, whereas

mathenatical techniques involving complex modeling and finite element

analysis require extensive computation for each input measurement. An

angle that is available in real time enables the design of a high performance,

highly fault tolerant machine. Another advantage of using neural networks

is their documented ability to provide correct outputs given faulty or missing

sensor inputs. Thus, a neural network would provide an additional layer of

fault tolerance to the system. In addition, the voltage and current

measurements to be used as inputs are generally noisy. Neural networks are

well known for their ability to generalize and thus successfully deal with a

certain amount of noise.

2
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METHODS

The training/testing data was obtained from a 120 hp 6/4 pole switched
reluctance machine. The geometry of the machine and the relative angle, 0,

are shown in Figure 1. The windings of opposite poles are connected in series

to make up a single phase. The other ends of the windings are connected to

the convener circuit. Only one phase connection is shown in Figure 1 for
simplicity.

IC

Figure 1. Geometry of the SRM

The data used for training the networks was obtained using a data

acquisition system with a 25 KHz sampling rate and a 16 bit resolution.

Parameters measured included three phase voltages, three phase currents, the

rotational speed and the relative rotor angle. The voltages and currents are

used as the six inputs to the neural network and the rotor angle is the desired
output. Some manipulation of the data was necessary due to an excessive

amount of noise present. The data was provided in the order that it was

measured. Each file contained a large number of revolutions under varying

speed and load conditions. Each file was rearranged in order of increasing

rotor angle. Then a single electrical period, 90 mechanical degrees, was

extracted. This data was then put through a low pass filter to extinguish the

high frequency noise. Examples of current and voltage waveforms before and

after filtering arc shown in Figure 2.

3
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Figure 2. Measured Waveforms / Pre and Post Filtering

Two types of network architectures were investigated for this

application, a backpropagation network and a Radial Basis Function (RBF)

network. Each architecture is shown in Figure 3.
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A standard backpropagation learning paradigm was utilized. The

transfer function chosen for the hidden layer was the sigmoid function. The

output of a hidden unit can be described as
yj = r( 1 wji* x)

where wj i is the weight associated with the connection from the ith input to

the jth hidden unit, x i is the input value for the ith input, and f(z) is the

sigmoid function,

f(z) = I/(I + e'Z)

The output layer also utilized a sigmoid function. Both three and four

layer architectures were investigated. The normalized cumulative delta rule

was chosen for the learning rule. The error, ej , is computed as the

difference between the desired or measured rotor angle and the computed

angle. The weights are updated by the following equation:

Aw Icoef *ej xi + momentum * Awji

where Icoef is the learning coefficient and Awji is the previous weight

update for the connection between theithinput and the jthhidden unit.

A major effort of this research involved exploring the Radial Basis

Function (RBF) network [2],[3]. A RBF network is a three layer network. The

first layer serves as an input layer, the middle or hidden layer uses the radial

basis functions as neurons, and the output layer uses simple summation

neurons. The nonlinear transfer function used in the hidden layer can be

chosen from a few typical functions including the thin-plate-spline function,

the multiquadric function and the Gaussian function. The most common

choice and the function employed here is the Gaussian. The activation or the

ou:put of the jthhidden unit is calculated as follows:

a ji- exp(-II cj - xi I 2 / a2 )

where x i is the input value, cj is the center of the jth radial unit in input

space, and a is the width of the radial unit or the size of the unit in input

space.

The radial basis function is also known as the hyperspherical decision

function because the feature space of the network is divided into M

hyperspherical decision regions where M is the number of hidden neurons.

The traditional implementation of this network requires as many hidden

6
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neurons as training points. Since each electrical period consists of over 1000

input vectors, this implementation would be impractical. The number of

neurons must be reduced for a successful implementation. The trick is in

selecting the RBF centers. Initially, the centers were chosen randomly from

the input space. Many centers were required using this technique since the

training data did not uniformly cover the input space. Some difficulties were

encountered using this method of choosing centers. Limited success was

obtained using very small networks. As the network size was increased, the

use of linear regression in solving for the weights became more impractical

and the algorithm failed due to numerical ill-conditioning. In an attempt to

avoid this situation, a singular value decomposition (SVD) technique was tried.

The number of neurons was able to be increased somewhat; however, a limit

was also reached at which the solution would not converge. Even if a network

with a larger number of hidden neurons was obtainable, the method of

randomly choosing the Gaussian centers is lacking repeatability and will

result in an inefficient network. (Inefficient meaning poor performance

with a large number of neurons.)

For these reasons an alternate method of choosing centers was

investigated. The orthogonal least squares (OLS) method can be used to choose

a set of centers from a large set of candidates [4]. In this technique's
implementation, a matrix of size N x M is manipulated where N is the number

of training points and M is the number of candidate centers. If N = M, the size

of this matrix is extremely large and computer memory becomes a problem.

Therefore, some technique of reducing the number of candidate centers was

required. Experimentation with the ratio of the final number of centers to

the number of candidate centers was performed. For example, if every 5th

data point out of 1000 points is chosen as a candidate center and 100 neurons is

chosen as the final number of neurons the resultant ratio is 0.5.

Once the center vectors are chosen, the size of each RBF needs to be

determined. The size of each RBF is chosen so any point in the input space

would be within the field of at least two neurons. This should enable a smooth

fit of the desired network outputs.

Since the only weighted connections are those from the RBFs to the

output which is a simple summation, training can be performed by linear

regression. The regression correlates the desired network outputs with the

hidden node activations.

7
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RESULTS & DISCUSSION

The performance of the networks is determined by two methods. First

the network is tested with the data which was used for training in order to

provide an indication if the chosen architecture showed any signs of promise.

Second, the network is tested with the noisy input data or filtered data not

previously used for training in order to assess the network's ability to

generalize and operate in a more realistic environment.

Figure 4. shows the outcome of the first attempt at using the RBF

network. The graph's x-axis, the step number, represents the record number

of the training file. There were 1014 training vectors used in this case. The

y-axis represents the rotor angle. The network was trained over 90, which

corresponds to 360 electrical degrees for this particular machine. The test data

was presented to the network in ascending order; thus, the desired output is a

straight line with a positive slope. The network's actual output is overlaid

upon the desired output. As can be observed in Figure 4., the network had

some success in mapping the correct output, but its mapping is too noisy for

any practical implementation.

100-

50-

0

6desired

-50

0 169 338 507 676 845 1014

Step Number

Figure 4. 6:20:1 RBF Network

(Weights solved by linear regression)
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The development of this network involved using linear regression to

solve for the weights. Linear regression is a highly desirable technique to use
because its implementation is straightforward and it finds the solution in only
a single pass; in other words, iterative training is unnecessary. Twenty is the
maximum number of hidden neurons that could be used before the linear
regression matrix became singular. A network of only twenty neurons is not

capable of mapping a six dimensional function; therefore, an alternate method

of solving for the weights was examined.

Figure 5. shows the output from a RBF using singular value
decomposition to solve for the weights. A canned SVD routine from the

application, MATLAB, was used. When the number of neurons was greater
than 100, the SVD routine could not converge. So, even though the number of
neurons using SVD was greater than the number of neurons using linear

regression, this network's performance was still unacceptable.

100* desire

80

1 60

40 actual

20

0

-20
0 169 338 507 676 845 1014

Step Number

Figure 5. 6:100:1 RBF Network (Weight solved by SVD)

The reason that the linear regression matrix becomes singular and the

SVD algorithm does not converge is probably because the centers of the

Gaussians which are randomly chosen are not representative of the input
space. 9ased on this assumption, the orthogonal least squares method of

choosing centers was investigated. The orthogonal least squares method was
difficult to implement. The method of choosing the original candidate centers

is unclear. Initial attempts to utilize OLS were unsuccessful and further effort

9
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is required.
Figure 6. shows the results from the first attempt at using the

backpropagation network. At this point, the method of choosing the training

points for the networks was re-evaluated. It was determined that preceding
input vectors should be fed into the network in addition to the real time
information. Since this method would greatly increase the number of inputs

to the network, the resolution of the training data was reduced by a factor of
ten. Up to seven previous steps of training vectors were fed into the network.
The results of training in this manner with 95 hidden neurons are shown in

Figure 7.

80

60 desired

40

actual
- 20

0

0 169 338 507 676 845 1014
Step Number

Figure 6. 6:40:1 Backpropagation Network

100

S 80
Bo-

In 60

40

20-

0

-20

0 17 34 51 68 85 102
Step Number

Figure 7. 48:95:1 Backpropagation Network
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Note the transient-like deviations at the edges of the performance plots.

This problem, which shall be termed edge transients, has been present in

every network architecture using every different training technique to date.

Its cause is unclear, however a number of hypotheses have been formed.

At first it appeared that the edge transients were due to a non-

uniqueness in the input data. This hypothesis, however, was disproven by the

following tests. The training data was shifted by 20, and the transients still

remained at the beginning and end of the testing data, even though this data

included different vectors from the unshifted data. Also, the entire training

set's output space was reduced to cover only 60 mechanical degrees, yet the

transients still appeared at the beginning and end of the 60*. From these tests,

it has been determined that the edge transients are independent of the

training vectors.

A second theory was investigated. In the backpropagation networks,

the output neuron employs a sigmoid transfer function which is nonlinear at

its edges. The theory proposes that the mapping into this nonlinear region

caused the edge transients. Two attempts to validate this proposal were made.

First, the output space of the network was expanded from 0 to 90* to -20 to

110". The expansion was performed by changing the maximum and minimum

numbers used for normalization. The intent of this expansion was to map the

desired outputs of 0 to 90O on the more linear section of the sigmoid function.

The results of this attempt are shown in Figure 8.

100*

80

60-
actual

40

20 desired
C

0
0 17 34 51 68 85 102

Step Number

Figure 8. 48:95:1 Backpropagation Network Trained with
Expanded Output Space
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The second attempt involved making the output neuron completely

linear. Training in this manner was much more sensitive. The learning

coefficient and momentum had to be kept very small (Icoef = 0.005, momentum

= 0.01) or otherwise the weights would quickly become large and negative or

large and positive. Training was tedious and time consuming. The results are

shown in Figure 9. As can be seen by the Figures, evidence to prove this

theory is lacking.

100 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

80Io
CL

Ldesired

60

40

20 actual

0-
0

0 17 34 51 68 85 102

Step Number

Figure 9. 48:95:1 Backpropagation Network with Linear Output

A third theory explaining the cause of the edge transients has been

developed but has not yet been fully validated. The desired output signal is not

just a single straight line from 0 to 90, but a continuous periodic sawtooth

waveform. As one rotor pole completes its electrical period with the stator

pole, the next rotor pole begins a new electrical period. The networks have

been trained to expect an angle close to 0* following an angle of 90 This

makes the output have a sharp transition at the wrap around point. The

theory proposes that this transition is too abrupt for the network to recognize.

To validate this theory, a training file was created in which the 0* point was

moved to the end of the file so that the sawtooth waveform is more evident.

The behavior of a network trained with this file is shown in Figure 10. Notice

that the transient only appears at the wrap around point at the end of the file

and not at the beginning.

12
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100

80

t
60-

40- de sir ed

2o-o 20
C

0 20 40 60 80 100
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Figure 10. 48:95:1 Backpropagation Network Trained
with Reordered Data

Although this explanation has credence, the best solution for the
problem in not obvious. A number of options for solving the problem can be
tricd. The resolution of the training data can be increased at the wrap around

point; or the error function can be made quadratic or cubic in order to
emphasize the large errors more so than the smaller errors, since the large

errors are due to the edge transients.
If these options are unsuccessful, a more complex method of solving the

problem may be required. A multi-network with a modular architecture that

will allow task decomposition is another possible solution [5]. The network
would be composed of three sub-networks. Network #1 would place the wrap

around point near 90 , at the end of the output space, as was done in the

network in Figure 10. Network #2 would place the wrap around point near 0%,

at the beginning of the output space. Network #3 would perform a gating

function; it would choose between Network #1 and #2's outputs. If the output

space is less than 45*, then Network #3 would choose Network #1's output

since there would be no edge transient in this output region. Similarly, if the

output space is greater than 45*, Network #3 would choose Network #2's

output since there would be no edge transient in this output region.

13
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CONCLUSIONS

The efforts of this research have shown that the application of neural

networks to SRM rotor position estimation is feasible. The optimal network

architecture has not yet been identified, but two types of paradigms have been
investigated, the RBF network and the backpropagation network.

Although the backpropagation networks' performance was comparable

to that of the RBF networks, it is anticipated that as the training input space is
increased by adding new waveforms to the training data, backpropagation

performance will not fare as well as RBF performance. This projection is
based upon the nature of the waveforms. The amplitude and overall shape of
the waveform will change due to different loading conditions under which the
SRM must operate. Since the backpropagation network normalizes the input
data, some difficulty in generalizing new waveforms is anticipated.

A distinctive performance problem, edge transients, has been

discovered in both the RBF networks and the backpropagation networks. A
number of theories as to the source of this problem have been developed and
investigated. The strongest theory identifies the wrap around point from the
end of the electrical period to the beginning of the next period as a sharp

transition point which is difficult to map precisely. Potential solutions have
been proposed. The most promising solution involves the creation of a
modular network that would decompose the output space in such a manner that

the edge transient regions could be avoided.

FURTHER INVESTIGATION

Before exploring alternate training methods and network architectures,

the edge transient problem must be solved. The possible solutions described in
the Results and Discussion section should be attempted.

Additional attempts at using the RBF functions using previous
information (more inputs) as was done in the backpropagation network,

should result in a better performing RBF network. Alternate techniques for
choosing candidate RBF centers should be investigated. Further observation of

14
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the effect of varying the size of the RBFs (width of the Gaussians) is also

recommended.

The optimum resolution of the training data and the best number of

previous vectors to be fed as inputs should be determined. Also, even though

three phase voltages and currents are available as inputs, they are not all

required to make the input space vector unique for each output point. All

voltages and currents should be used, but the network should be tested with

missing inputs to evaluate its level of redundancy.

Additional investigation into alternate network architectures and

training schemes is suggested. A determination of the effect of training with

additional waveforms is required before a decision as to which type of network

(RBF or backpropagation) is more suitable for this application.
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